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Observation
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On the category side all known arguments proving that it is consistent
that UM C PM use the idea of the Lusin function or similar ideas.

Lusin function (Lusin, Sierpiniski, [7])

There exists a function L£: w* — 2%, such that:
@ L is continuous and one-to-one,
o if L is a Lusin set, then L[L] € PM,

o £ 1is of the Baire class one.
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The main open question
Is it consistent, that UN C PN?

On the category side all known arguments proving that it is consistent
that UM C PM use the idea of the Lusin function or similar ideas.

Lusin function (Lusin, Sierpinski, [7])
There exists a function L£: w* — 2%, such that:

@ L is continuous and one-to-one,

o if L is a Lusin set, then L[L] € PM,

e L1 is of the Baire class one.

Recall that UM is closed under taking Borel isomorphic images. So if
there exists a Lusin set it is obvious that UM C PM.

Does there exist a measure counterpart to the Lusin function?
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perfect set P there exists F, set F, F O X such that for every
t € 2“, F is meager in P + t.
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Recall that a set is perfectly meager if it is meager in every perfect
set (in the subset topology). It may seem superfluous but we can say
that a set X is perfectly meager if for every perfect set P and t € 2
there exists a F, set F O X such that F is meager in P + t. This,
and the question of M. Scheepers of whether the algebraic sum of a
SN set and a SM set is always s5, motivates the following definition.

Perfectly meager in the transitive sense (Nowik, Scheepers, Weiss, [4])

A set X is perfectly meager in the transitive sense (PM’) if for any
perfect set P there exists F, set F, F O X such that for every
t € 2“, F is meager in P + t.

Theorem (Nowik, Scheepers, Weiss, [4], [5], [3])

SM C PM’ C UM and those inclusions are consistently proper.
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Perfectly null in the transitive sense

A set X is perfectly null in the transitive sense (PN') if for any
perfect set P there exists G5 set G, G O X such that for every
te2¥ G+tis pp-null

A\




The class of
perfectly null sets
and its transitive

version

Michat Korch

Perfectly null sets
in the transitive
sense

Perfectly null sets in the transitive sense

Perfectly meager in the transitive sense (Nowik, Scheepers, Weiss, [4])

A set X is perfectly meager in the transitive sense (PM’) if for any
perfect set P there exists F, set F, F O X such that for every
t € 2¥, F is meager in P + t.

| \

Perfectly null in the transitive sense

A set X is perfectly null in the transitive sense (PN') if for any
perfect set P there exists Gs, set G, G O X such that for every
te2¥ G+tis pp-null

A\




The class of
perfectly null sets
and its transitive

version

Michat Korch

Perfectly null sets
in the transitive
sense

Perfectly null sets in the transitive sense

Perfectly meager in the transitive sense (Nowik, Scheepers, Weiss, [4])

A set X is perfectly meager in the transitive sense (PM’) if for any
perfect set P there exists F, set F, F O X such that for every
t € 2¥, F is meager in P + t.

| \

Perfectly null in the transitive sense

A set X is perfectly null in the transitive sense (PN') if for any
perfect set P there exists Gs, set G, G O X such that for every
te2¥ G+tis pp-null

A\

Now we would like to know whether

SN C PN’ € UN and whether those inclusions are consistently
proper?
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Every strongly null set is perfectly null in the transitive sense.

Proof (sketch):

Let X be a strongly null set and P a perfect set. Recall that since X
is strongly null, for every sequence of positive numbers (c,) ., there
exists a sequence of open sets (A,: n € w) such that

X C Mpmew Upsm An and diamA, < e,
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SN C PN’

Every strongly null set is perfectly null in the transitive sense.

Proof (sketch):

Let X be a strongly null set and P a perfect set. Recall that since X
is strongly null, for every sequence of positive numbers (c,) ., there
exists a sequence of open sets (A,: n € w) such that

X C NMmew Uan A, and diamA, < g,,.

We can take such g, that for every A such that diamA < ¢,,

[L,D(A) < 2%,

For such €5, ((,hew, Upsm An) + t is of measure jup zero for any

t € 2¥ and therefore it can be used as the Gg, set in the definition of
perfectly null set in the transitive sense. [J
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Proof (sketch): The method used in this proof first appeared in a
paper of |. Rectaw [6] and later in [8].

We can construct disjoint perfect sets C, D C 2%, such that CUD is
linearly independent over Z,. And we can assume that X € UN,

X C Cand|X|=c.
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It is consistent that UN # PN’

If there exists a UN set of cardinality ¢ then there exists a set
Y € UN\ PN’

Proof (sketch): The method used in this proof first appeared in a
paper of |. Rectaw [6] and later in [8].

We can construct disjoint perfect sets C, D C 2%, such that CUD is
linearly independent over Z,. And we can assume that X € UN,

X C Cand|X|=c.

Enumerate all Gs, sets as {By: x € X}.

Choose y, € x + D for x € X, such that y, ¢ B, if
(x+D)\ By # @. Let Y = {yx: x € X}.

+: Cx D — C+ D is a homeomorphism and m1[+7[Y]] = X, so YV
is also universally null.

Assume that Y € PN’. Then there exists x € X such that Y C B,
and for any t € 2¥ up(By +t) = 0. Take t = x. We see that

Yx € By, s0 DN (Bx+ x) = D, so up(Bx + x) = 1. A contradiction.
O
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Open problems

We wanted to know whether SN C PN’ C UN and whether those
inclusions are consistently proper.
We proved that:

@ Every strongly null set is perfectly null in the transitive sense.

@ If there exists a UN set of cardinality ¢, there exists a set
Y € UN\ PN’

The other two problems are still open:

Is it consistent that SN # PN'?

In particular, does there exist uncountable PN’ set in every model of
ZFC?

PN’ C UN?
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